ELIOTT

- Volume 2: PROGRAMMING INFORMATION
- Part 2: PROGRAM DESCRIPTIONS
- Section 15: QDASIN (B. 104A)

Contents

			Page
Chapter	1:	INTRODUCTION	
1		1.1 Purpose	1
		1.2 Form of Distribution	1
		1.3 Method of Use	1
		1.4 Accuracy	1
Chapter	2:	FUNCTIONS	
Onapter	4.	2.1 Notation	2
		2.2 Format	-
		2.3 Number Type	
		2.4 Entry and Exit	
		2.5 Identifiers	3
Chapter	3:	METHOD USED	4
Chapter	4:	TIME TAKEN	4
Chapter	5:	STORE USED	4

Copyright English Electric Computers Limited July, 1968

Printed in England by Engineering Unit, English Electric Computers Ltd.

Chapter 1: INTRODUCTION

1.1 Purpose

To calculate, as double-length fractions,

 $\begin{array}{c} \frac{1}{2} \text{ sin } \Pi \text{ x}\\ \text{and} \\ \frac{1}{2} \cos \Pi \text{ x} \end{array}$

where x is a double-length fraction.

1.2 Form of Distribution

The program is distributed as a SIR mnemonic tape.

1.3 Method of Use

The routine is assembled as a block of the user's program and used as a sub-routine. It can be run at any program level and in any store-module.

When QDASIN is used, QDLA must also be held in store.

1.4 Accuracy

The maximum error is $2^{-31}(0.5 \times 10^{-9})$.

903 2.2.15.

Chapter 2: FUNCTIONS

2.1 Notation

x(m. s.) = most significant half of xx(l. s.) = least significant half of x

A fraction $x = \frac{1}{2}(n+y)$ such that n is an integer and

 $\begin{aligned} -\frac{1}{2} &\leq y < +\frac{1}{2} \\ Z &= \tan (\pi y/4) \\ S &= \frac{1}{2} \sin (\pi y/2) \\ C &= \frac{1}{2} \cos (\pi y/2) \end{aligned}$

2.2 Format

A double-length number, x, is held in two consecutive store locations, X and X+1:

Bit 18 of X+1 must be zero;
Bit 18 of X gives sign of x;
Bits 17-1 of X give 17 most significant numerical bits of X;
Bits 17-1 of X+1 give 17 least significant numerical bits of X;

Negative number representation is by the usual 2's complement notation (except that bit 18 of X+1 must be zero).

2.3 Number Type

The operand, x, and the result must be treated by the programmer as pure fractions.

To enable this to be done, QDASIN calculates

 $\frac{1}{2}\sin \pi x$ and $\frac{1}{2}\cos \pi x$

Note: therefore, that x is the value of an angle as a fraction of π radians (180°).

2.4 Entry and Exit

A double-length number is held in two consecutive store-locations, the description below gives only the first of the two.

Entry (for assembly by SIR) place x in QDASIN+98 and x(m.s.) in the accumulator and enter 11 QDASIN 8 QDASIN+1

Exit $\frac{1}{2} \sin \pi x$ in QDASIN+102 and in QDLA+16 $\frac{1}{2} \cos \pi x$ in QDASIN+104

N.B. The instruction pair 11 QDASIN 8 QDASIN+1

must not be part of a pseudo-program interpreted by QDLA.

2.5 Identifiers

QDASIN must be declared as a global identifier in all blocks of a SIR program which refer to it. 903 2.2.15.

Chapter 3: METHOD USED

QDASIN uses QDLA to interpret some of the double-length calculations.

a)

The program computes

$$z = \frac{4y}{4-y^2} P(y^2)$$

where P is a power series which converges rapidly when y is in the defined range.

b)

 $S = \frac{Z}{1+Z^2}$

$$C = \frac{1}{2} \frac{(1 - Z^2)}{(1 + Z^2)}$$

and the values are found according to the table below.

n	$\frac{1}{2} \sin \pi x$	$\frac{1}{2}\cos \pi x$
-2	- S	- C
- 1	- C	S
0	S	C
+1	C	- S

Chapter 4: TIME TAKEN

The time taken is approximately 50 milliseconds.

Chapter 5: STORE USED

QDASIN uses 106 consecutive locations.